Human population structure detection via multilocus genotype clustering.

58Citations
Citations of this article
100Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

BACKGROUND: We describe a hierarchical clustering algorithm for using Single Nucleotide Polymorphism (SNP) genetic data to assign individuals to populations. The method does not assume Hardy-Weinberg equilibrium and linkage equilibrium among loci in sample population individuals. RESULTS: We show that the algorithm can assign sample individuals highly accurately to their corresponding ethnic groups in our tests using HapMap SNP data and it is also robust to admixed populations when tested with Perlegen SNP data. Moreover, it can detect fine-scale population structure as subtle as that between Chinese and Japanese by using genome-wide high-diversity SNP loci. CONCLUSION: The algorithm provides an alternative approach to the popular STRUCTURE program, especially for fine-scale population structure detection in genome-wide association studies. This is the first successful separation of Chinese and Japanese samples using random SNP loci with high statistical support.

Cite

CITATION STYLE

APA

Gao, X., & Starmer, J. (2007). Human population structure detection via multilocus genotype clustering. BMC Genetics, 8, 34. https://doi.org/10.1186/1471-2156-8-34

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free