After vascular angioplasty, vascular smooth muscle cell (VSMC) proliferation causes atherosclerosis and intimal hyperplasia leading to restenosis. Interferon-γ-inducible protein (IP)-10 plays a role in atherogenesis, but the mechanism remains unclear. We evaluated the role of IP-10 in intimal hyperplasia and restenosis. IP-10 expression was determined in arterial specimens from 20 arteriosclerotic obliteration patients and 6 healthy individuals. VSMCs were stimulated in vitro with IFN-γ and transfected with IP-10 siRNA. Silencing was verified with RT-PCR/Western blot; cell proliferation rate was detected by methyl-thiazol-tetrazolium. The carotid artery model of atherosclerosis injury was established with IP-10 siRNA. IP-10 expression was detected at 1 and 4 weeks using RT-PCR and immunohistochemistry. Artery morphology was assessed with hematoxylin-and-eosin staining, and intimal hyperplasia was evaluated by electron microscopy. IP-10 was overexpressed in arteriosclerotic obliteration group compared with control group (P < 0.05). IP-10 expression in transfected group was significantly lower than in untransfected group. The intima-to-media ratio of transfected group at 4 weeks was lower than that of untransfected group (P < 0.01). The transfected group exhibited more regular intimal structure and less hyperplasia under electron microscopy. We, therefore, concluded that IP-10 played an important role in intimal hyperplasia as siRNA-mediated IP-10 silencing inhibited aberrant VSMCs hyperplasia and reduced restenosis. © 2011 Springer Science+Business Media, LLC.
CITATION STYLE
Zuojun, H., Lingyu, H., Wei, H., Henghui, Y., Chonggang, Z., Jingsong, W., … Shenming, W. (2012). Interference of IP-10 Expression Inhibits Vascular Smooth Muscle Cell Proliferation and Intimal Hyperplasia in Carotid Artery: A New Insight in the Prevention of Restenosis. Cell Biochemistry and Biophysics, 62(1), 125–135. https://doi.org/10.1007/s12013-011-9270-9
Mendeley helps you to discover research relevant for your work.