Sequence recognition of natural scene images has always been an important research topic in the field of computer vision. CRNN has been proven to be a popular end-to-end character sequence recognition network. However, the problem of wide characters is not considered under the setting of CRNN. The CRNN is less effective in recognizing long dense small characters. Aiming at the shortcomings of CRNN, we proposed an improved CRNN network, named CRNN-RES, based on BiLSTM and multiple receptive fields. Specifically, on the one hand, the CRNN-RES uses a dual pooling core to enhance the CNN network’s ability to extract features. On the other hand, by improving the last RNN layer, the BiLSTM is changed to a shared parameter BiLSTM network using recursive residuals, which reduces the number of network parameters and improves the accuracy. In addition, we designed a structure that can flexibly configure the length of the input data sequence in the RNN layer, called the CRFC layer. Comparing the CRNN-RES network proposed in this paper with the original CRNN network, the extensive experiments show that when recognizing English characters and numbers, the parameters of CRNN-RES is 8197549, which decreased 133,752 parameters compare with CRNN. In the public dataset ICDAR 2003 (IC03), ICDAR 2013 (IC13), IIIT 5k-word (IIIT5k), and Street View Text (SVT), the CRNN-RES obtain the accuracy of 96.90%, 89.85%, 83.63%, and 82.96%, which higher than CRNN by 1.40%, 3.15%, 5.43%, and 2.16% respectively.
CITATION STYLE
Meng, P., Jia, S., & Li, Q. (2021). An innovative network based on double receptive field and Recursive Bi-directional Long Short-Term Memory. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-01520-y
Mendeley helps you to discover research relevant for your work.