Algebraic decomposition for probing security

36Citations
Citations of this article
32Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The probing security model is very popular to prove the sidechannel security of cryptographic implementations protected by masking. A common approach to secure nonlinear functions in this model is to represent them as polynomials over a binary field and to secure their nonlinear multiplications thanks to a method introduced by Ishai, Sahai and Wagner at Crypto 2003. Several schemes based on this approach have been published, leading to the recent proposal of Coron, Roy and Vivek which is currently the best known method when no particular assumption is made on the algebraic structure of the function. In the present paper, we revisit this idea by trading nonlinear multiplications for lowdegree functions. Specifically, we introduce an algebraic decomposition approach in which a nonlinear function is represented as a sequence of functions with low algebraic degrees. We therefore focus on the probingsecure evaluation of such low-degree functions and we introduce three novel methods to tackle this particular issue. The paper concludes with a comparative analysis of the proposals, which shows that our algebraic decomposition method outperforms the method of Coron, Roy and Vivek in several realistic contexts.

Cite

CITATION STYLE

APA

Carlet, C., Prouff, E., Rivain, M., & Roche, T. (2015). Algebraic decomposition for probing security. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 9215, pp. 742–763). Springer Verlag. https://doi.org/10.1007/978-3-662-47989-6_36

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free