Eight rainfall events recorded from May to September 2013 at Hong Kong International Airport (HKIA) have been selected to investigate the performance of post-processing algorithms used to calculate the rainfall intensity (RI) from tipping-bucket rain gauges (TBRGs). We assumed a drop-counter catching-type gauge as a working reference and compared rainfall intensity measurements with two calibrated TBRGs operated at a time resolution of 1min. The two TBRGs differ in their internal mechanics, one being a traditional single-layer dual-bucket assembly, while the other has two layers of buckets. The drop-counter gauge operates at a time resolution of 10s, while the time of tipping is recorded for the two TBRGs. The post-processing algorithms employed for the two TBRGs are based on the assumption that the tip volume is uniformly distributed over the inter-tip period. A series of data of an ideal TBRG is reconstructed using the virtual time of tipping derived from the drop-counter data. From the comparison between the ideal gauge and the measurements from the two real TBRGs, the performances of different post-processing and correction algorithms are statistically evaluated over the set of recorded rain events. The improvement obtained by adopting the inter-tip time algorithm in the calculation of the RI is confirmed. However, by comparing the performance of the real and ideal TBRGs, the beneficial effect of the inter-tip algorithm is shown to be relevant for the mid-low range (6-50mmh-1) of rainfall intensity values (where the sampling errors prevail), while its role vanishes with increasing RI in the range where the mechanical errors prevail.
CITATION STYLE
Stagnaro, M., Colli, M., Giovanni Lanza, L., & Wai Chan, P. (2016). Performance of post-processing algorithms for rainfall intensity using measurements from tipping-bucket rain gauges. Atmospheric Measurement Techniques, 9(12), 5699–5706. https://doi.org/10.5194/amt-9-5699-2016
Mendeley helps you to discover research relevant for your work.