A Few-Shot Dental Object Detection Method Based on a Priori Knowledge Transfer

4Citations
Citations of this article
25Readers
Mendeley users who have this article in their library.

Abstract

With the continuous improvement in oral health awareness, people’s demand for oral health diagnosis has also increased. Dental object detection is a key step in automated dental diagnosis; however, because of the particularity of medical data, researchers usually cannot obtain sufficient medical data. Therefore, this study proposes a dental object detection method for small-size datasets based on teeth semantics, structural information feature extraction, and an a priori knowledge migration, called a segmentation, points, segmentation, and classification network (SPSC-NET). In the region of interest area extraction method, the SPSC-NET method converts the teeth X-ray image into an a priori knowledge information image, composed of the edges of the teeth and the semantic segmentation image; the network structure used to extract the a priori knowledge information is a symmetric structure, which then generates the key points of the object instance. Next, it uses the key points of the object instance (i.e., the dental semantic segmentation image and the dental edge image) to obtain the object instance image (i.e., the positioning of the teeth). Using 10 training images, the test precision and recall rate of the tooth object center point of the SPSC-NET method were between 99–100%. In the classification method, the SPSC-NET identified the single instance segmentation image generated by migrating the dental object area, the edge image, and the semantic segmentation image as a priori knowledge. Under the premise of using the same deep neural network classification model, the model classification with a priori knowledge was 20% more accurate than the ordinary classification methods. For the overall object detection performance indicators, the SPSC-NET’s average precision (AP) value was more than 92%, which is better than that of the transfer-based faster region-based convolutional neural network (Faster-RCNN) object detection model; moreover, its AP and mean intersection-over-union (mIOU) were 14.72% and 19.68% better than the transfer-based Faster-CNN model, respectively.

Cite

CITATION STYLE

APA

Wu, H., & Wu, Z. (2022). A Few-Shot Dental Object Detection Method Based on a Priori Knowledge Transfer. Symmetry, 14(6). https://doi.org/10.3390/sym14061129

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free