The tongue is a critical element of the feeding system in tetrapod animals for their successful adaptation to terrestrial life. Whereas the oral part of the mammalian tongue contains soft tissues only, the avian tongue has an internal skeleton extending to the anterior tip. The mechanisms underlying the evolutionary divergence in tongue skeleton formation are completely unknown.We show here that the odd-skipped related-1 (Osr1) transcription factor is expressed throughout the neural crest-derived tongue mesenchyme in mouse, but not in chick, embryos during early tongue morphogenesis. Neural crest-specific inactivation of Osr1 resulted in formation of an ectopic cartilage in themouse tongue, reminiscent in shape and developmental ontogeny of the anterior tongue cartilage in chick. SRY-box containing gene-9 (Sox9), the master regulator of chondrogenesis, is widely expressed in the nascent tongue mesenchyme at the onset of tongue morphogenesis but its expression is dramatically downregulated concomitant with activation of Osr1 expression in the developing mouse tongue. In Osr1 mutant mouse embryos, expression of Sox9 persisted in the developing tongue mesenchyme where chondrogenesis is subsequently activated to form the ectopic cartilage. Furthermore, we show that Osr1 binds to the Sox9 gene promoter and that overexpression of Osr1 suppressed expression of endogenous Sox9 mRNAs and Sox9 promoter-driven reporter. These data indicate that Osr1 normally prevents chondrogenesis in the mammalian tongue through repression of Sox9 expression and suggest that changes in regulation of Osr1 expression in the neural crest-derived tongue mesenchyme underlie the evolutionary divergence of birds from other vertebrates in tongue morphogenesis.
CITATION STYLE
Liu, H., Lan, Y., Xu, J., Chang, C. F., Brugmann, S. A., & Jiang, R. (2013). Odd-skipped related-1 controls neural crest chondrogenesis during tongue development. Proceedings of the National Academy of Sciences of the United States of America, 110(46), 18555–18560. https://doi.org/10.1073/pnas.1306495110
Mendeley helps you to discover research relevant for your work.