Reaction kinetics from thermal analysis

  • Brown M
N/ACitations
Citations of this article
19Readers
Mendeley users who have this article in their library.
Get full text

Abstract

To evaluate the usefulness of this biomarker in the diagnosis of cases of cervical neoplasia we studied the immunohistochemical expression of p16INK4a in a large series of archival cervical biopsies arranged into tissue microarray format. TMAs were constructed with tissue cores from archival formalin fixed, paraffin-embedded donor tissues from 796 patients, and included cases of cervical intraepithelial neoplasia (CIN)1 (n = 249), CIN2 (n = 233), CIN3 (n = 181), and invasive cervical carcinoma (n = 133). p16INK4a expression was scored using two different protocols: 1) positive vs negative p16INK4a staining; 2) a semi-quantitative immunohistochemical score (0 to 8 points) according to the intensity of staining and the proportion of stained cells p16INK4A expression was not seen in normal cervix tissue, but was found with increasing frequency in the sequence: CIN1 (180/249; 72.3%) – CIN2 (212/233; 91.0%) – CIN3 (178/181; 98.3%) – invasive carcinoma (131/133; 98.5%). Using semi-quantitative scoring, all normal cervical samples had low scores (from 0 to 2 points), whilst the number of specimens with high scores was proportional to the degree of cervical dysplasia or the presence of invasive carcinoma. Immunohistochemical analysis of p16INK4a expression is a useful diagnostic tool. Expression is related to the degree of histological dysplasia, suggesting that it may have prognostic and predicative value in the management of cervical neoplasia.

Cite

CITATION STYLE

APA

Brown, M. E. (1988). Reaction kinetics from thermal analysis. In Introduction to Thermal Analysis (pp. 127–151). Springer Netherlands. https://doi.org/10.1007/978-94-009-1219-9_13

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free