Targeting sphingosine 1-phosphate receptor 3 inhibits T-cell exhaustion and regulates recruitment of proinflammatory macrophages to improve antitumor efficacy of CAR-T cells against solid tumor

11Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

Abstract

Backgrounds Chimeric antigen receptor (CAR)-modified T cells (CAR-T) are limited in solid tumors due to the hostile tumor microenvironment (TME). Combination therapy could be a promising approach to overcome this obstacle. Recent studies have shown that sphingosine 1-phosphate receptor (S1PR)3 has tremendous potential in regulating the immune environment. However, the functional significance of S1PR3 in T-cell-based immunotherapies and the molecular mechanisms have not been fully understood. Methods Here, we studied the combination of EpCAM-specific CAR T-cell therapy with pharmacological blockade of S1PR3 against solid tumor. We have applied RNA sequencing, flow cytometry, ELISA, cellular/molecular immunological technology, and mouse models of solid cancers. Results Our study provided evidence that S1PR3 high expression is positively associated with resistance to programmed cell death protein-1 (PD-1)-based immunotherapy and increased T-cell exhaustion. In addition, pharmacological inhibition of S1PR3 improves the efficacy of anti-PD-1 therapy. Next, we explored the possible combination of S1PR3 antagonist with murine EpCAM-targeted CAR-T cells in immunocompetent mouse models of breast cancer and colon cancer. The results indicated that the S1PR3 antagonist could significantly enhance the efficacy of murine EpCAM CAR-T cells in vitro and in vivo. Mechanistically, the S1PR3 antagonist improved CAR-T cell activation, regulated the central memory phenotype, and reduced CAR-T cell exhaustion in vitro. Targeting S1PR3 was shown to remodel the TME through the recruitment of proinflammatory macrophages by promoting macrophage activation and proinflammatory phenotype polarization, resulting in improved CAR-T cell infiltration and amplified recruitment of CD8+T cells. Conclusions This work demonstrated targeting S1PR3 could increase the antitumor activities of CAR-T cell therapy at least partially by inhibiting T-cell exhaustion and remodeling the TME through the recruitment of proinflammatory macrophages. These findings provided additional rationale for combining S1PR3 inhibitor with CAR-T cells for the treatment of solid tumor.

Cite

CITATION STYLE

APA

Gao, G., Liao, W., Shu, P., Ma, Q., He, X., Zhang, B., … Wang, Y. (2023). Targeting sphingosine 1-phosphate receptor 3 inhibits T-cell exhaustion and regulates recruitment of proinflammatory macrophages to improve antitumor efficacy of CAR-T cells against solid tumor. Journal for ImmunoTherapy of Cancer, 11(8). https://doi.org/10.1136/jitc-2022-006343

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free