Shear-thinning and constant viscosity predictions for rotating sphere flows

1Citations
Citations of this article
2Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The steady motion of a rotating sphere is analysed through two contrasting viscoelastic models, a constant viscosity (FENE-CR) model and a shear-thinning (LPTT) model. Giesekus (Rheol. Acta 9:30–38, 1970) presented an intriguing rotating viscoelastic flow, which to date has not been completely explained. In order to investigate this flow, sets of parameters have been explored to analyse the significant differences introduced with the proposed models, while the momentum-continuity-stress equations are solved through a hybrid finite-element/finite volume numerical scheme. Solutions are discussed for first, sphere angular velocity increase ((Formula presented.)), and second, through material velocity-scale increase ((Formula presented.)). Numerical predictions for different solvent-ratios ((Formula presented.)) show significant differences as the sphere angular velocity increases. It is demonstrated that an emerging equatorial anticlockwise vortex emerges in a specific range of (Formula presented.). As such, this solution matches closely with the Giesekus experimental findings. Additionally, inside the emerging inertial vortex, a contrasting positive second normal stress-difference ((Formula presented.)) region is found compared against the negative (Formula presented.) -enveloping layer.

Cite

CITATION STYLE

APA

Garduño, I. E., Tamaddon-Jahromi, H. R., & Webster, M. F. (2016). Shear-thinning and constant viscosity predictions for rotating sphere flows. Mechanics of Time-Dependent Materials, 20(1), 95–122. https://doi.org/10.1007/s11043-015-9286-4

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free