Joint optimization of detection threshold and resource allocation in infrastructure-based multi-band cognitive radio networks

1Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Consider an infrastructure-based multi-band cognitive radio network (CRN) where secondary users (SUs) opportunistically access a set of sub-carriers when sensed as idle. The carrier sensing threshold which affects the access opportunities of SUs is conventionally regarded as static and treated independently from the resource allocation in the model. In this article, we study jointly the optimization of detection threshold and resource allocation with the goal of maximizing the total downlink capacity of SUs in such CRNs. The optimization problem is formulated considering three sets of variables, i.e., detection threshold, sub-carrier assignment and power allocation, with constraints on the PUs’ rate loss and the power budget of the CR base station. Two schemes, referred to as offline and online algorithms respectively, are proposed to solve the optimization problem. While the offline algorithm finds the global optimal solution with high complexity, the online algorithm provides a close-to-optimal solution with much lower complexity and realtime capability. The performance of the proposed schemes is evaluated by extensive simulations and compared with the conventional static threshold selection algorithm specified in the IEEE 802.22 standard.

Cite

CITATION STYLE

APA

Shi, C., Wang, Y., Wang, T., Zhang, P., Martinez-Bauset, J., & Li, F. Y. (2012). Joint optimization of detection threshold and resource allocation in infrastructure-based multi-band cognitive radio networks. Eurasip Journal on Wireless Communications and Networking, 2012(1). https://doi.org/10.1186/1687-1499-2012-334

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free