Biomimetic Light-Driven Aerogel Passive Pump for Volatile Organic Pollutant Removal

12Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Inspired by the solar-light-driven oxygen transportation in aquatic plants, a biomimetic sustainable light-driven aerogel pump with a surface layer containing black manganese oxide (MnO2) as an optical absorber is developed. The flow intensity of the pumped air is controlled by the pore structure of nanofilbrillated cellulose, urea-modified chitosan, or polymethylsilsesquioxane (PMSQ) aerogels. The MnO2-induced photothermal conversion drives both the passive gas flow and the catalytic degradation of volatile organic pollutants. All investigated aerogels demonstrate superior pumping compared to benchmarked Knudsen pump systems, but the inorganic PMSQ aerogels provide the highest flexibility in terms of the input power and photothermal degradation activity. Aerogel light-driven multifunctional gas pumps offer a broad future application potential for gas-sensing devices, air-quality mapping, and air quality control systems.

Cite

CITATION STYLE

APA

Drdova, S., Zhao, S., Giannakou, M., Sivaraman, D., Guerrero-Alburquerque, N., Bonnin, A., … Wang, J. (2022). Biomimetic Light-Driven Aerogel Passive Pump for Volatile Organic Pollutant Removal. Advanced Science, 9(11). https://doi.org/10.1002/advs.202105819

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free