Optimally-calibrated non-invasive feedback improves amputees' metabolic consumption, balance and walking confidence

14Citations
Citations of this article
54Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Objective. Lower-limb amputees suffer from a variety of health problems, including higher metabolic consumption and low mobility. These conditions are linked to the lack of a natural sensory feedback (SF) from their prosthetic device, which forces them to adopt compensatory walking strategies that increase fatigue. Recently, both invasive (i.e. requiring a surgery) and non-invasive approaches have been able to provide artificial sensations via neurostimulation, inducing multiple functional and cognitive benefits. Implants helped to improve patient mobility and significantly reduce their metabolic consumption. A wearable, non-invasive alterative that provides similar useful health benefits, would eliminate the surgery related risks and costs thereby increasing the accessibility and the spreading of such neurotechnologies. Approach. Here, we present a non-invasive SF system exploiting an optimally-calibrated (just noticeable difference-based) electro-cutaneous stimulation to encode intensity-modulated foot-ground and knee angle information personalized to the user's just noticeable perceptual threshold. This device was holistically evaluated in three transfemoral amputees by examination of metabolic consumption while walking outdoors, walking over different inclinations on a treadmill indoors, and balance maintenance in reaction to unexpected perturbation on a treadmill indoors. We then collected spatio-temporal parameters (i.e. gait dynamic and kinematics), and self-reported prosthesis confidence while the patients were walking with and without the SF. Main results. This non-invasive SF system, encoding different distinctly perceived levels of tactile and knee flexion information, successfully enabled subjects to decrease metabolic consumption while walking and increase prosthesis confidence. Remarkably, more physiological walking strategies and increased stability in response to external perturbations were observed while walking with the SF. Significance. The health benefits observed with the use of this non-invasive device, previously only observed exploiting invasive technologies, takes an important step towards the development of a practical, non-invasive alternative to restoring SF in leg amputees.

Cite

CITATION STYLE

APA

Chee, L., Valle, G., Marazzi, M., Preatoni, G., Haufe, F. L., Xiloyannis, M., … Raspopovic, S. (2022). Optimally-calibrated non-invasive feedback improves amputees’ metabolic consumption, balance and walking confidence. Journal of Neural Engineering, 19(4). https://doi.org/10.1088/1741-2552/ac883b

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free