Moths use multimodal sensory information to adopt adaptive resting orientations

9Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Camouflage conceals animals from predators and depends on the interplay between the morphology and behaviour of animals. Behavioural elements of animals, such as the choice of a resting spot or posture, are important for effective camouflage, as well as the animals' cryptic appearance. To date, the type of sensory input that mediates resting site choice remains poorly understood. Previously, we showed that bark-like moths perceive and rely on bark structure to seek out cryptic resting positions and body orientations on tree trunks. In the present study, we investigated the sensory organs through which moths perceive the structure of bark when positioning their bodies in adaptive resting orientations. We amputated (or blocked) each one of the hypothetical sensory organs in moths (antennae, forelegs, wings, and eyes) and tested whether they were still able to perceive bark structure properly and adopt adaptive resting orientations. We found that visual information or stimulation is crucial for adaptively orienting their bodies when resting and tactile information from wings may play an additional role. The present study reveals multimodal information use by moths to achieve visual camouflage and highlights the sensory mechanism that is responsible for the adaptive behaviour of cryptic insects. © 2014 The Linnean Society of London.

Cite

CITATION STYLE

APA

Kang, C., Moon, J. Y., Lee, S. I., & Jablonski, P. G. (2014). Moths use multimodal sensory information to adopt adaptive resting orientations. Biological Journal of the Linnean Society, 111(4), 900–904. https://doi.org/10.1111/bij.12278

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free