Quantum sensing of rotation velocity based on transverse field Ising model

2Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Abstract: We study a transverse-field Ising model (TFIM) in a rotational reference frame. We find that the effective Hamiltonian of the TFIM of this system depends on the system’s rotation velocity. Since the rotation contributes an additional transverse field, the dynamics of TFIM sensitively responses to the rotation velocity at the critical point of quantum phase transition. This observation means that the TFIM can be used for quantum sensing of rotation velocity that can sensitively detect rotation velocity of the total system at the critical point. It is found that the resolution of the quantum sensing scheme we proposed is characterized by the half-width of Loschmidt echo of the dynamics of TFIM when it couples to a quantum system S. And the resolution of this quantum sensing scheme is proportional to the coupling strength δ between the quantum system S and the TFIM, and to the square root of the number of spins N belonging the TFIM. Graphical abstract: [Figure not available: see fulltext.].

Author supplied keywords

Cite

CITATION STYLE

APA

Ma, Y. H., & Sun, C. P. (2017). Quantum sensing of rotation velocity based on transverse field Ising model. European Physical Journal D, 71(10). https://doi.org/10.1140/epjd/e2017-80247-x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free