Vanadium has demonstrated antihyperglycemic effects in diabetes mellitus (DM) but is, however, associated with toxicity. Therefore, new vanadium complexes envisaged to possess heightened therapeutic potency while rendering less toxicity are being explored. Accordingly, the aim of the study was to investigate the effects of a dioxidovanadium (V) complex, cis-[VO2 (obz) py], on selected glucose metabolism markers in streptozotocin (STZ)-induced diabetic rats. STZ-induced diabetic rats were treated orally with cis-[VO2 (obz) py] (10, 20, and 40 mg/kg) twice every 3rd day for 5 weeks. Blood glucose concentrations, body weight, and food and water intake were monitored weekly, for 5 weeks. Rats were then euthanized after which blood, liver, and muscle tissues were collected for biochemical analysis. The administration of dioxidovanadium complex significantly decreased blood glucose concentrations throughout the 5-week period in comparison with the diabetic control (DC). The attenuation of hyperglycemia was accompanied by an increased glycogen concentration in both liver and muscle tissues in the treated groups. Furthermore, a significant increase was observed in the expression of glucose transporter type 4 (GLUT4) in the skeletal muscle tissues and glycogen synthase in the liver tissues. These findings indicate that our vanadium complex cis-[VO2 (obz) py] may exert antihyperglycemic effects through increased glucose uptake, glycogen synthesis, and increased GLUT4 and glycogen synthase expression.
CITATION STYLE
Mbatha, B., Khathi, A., Sibiya, N., Booysen, I., & Ngubane, P. (2022). A Dioxidovanadium Complex cis -[VO2 (obz) py] Attenuates Hyperglycemia in Streptozotocin (STZ)-Induced Diabetic Male Sprague-Dawley Rats via Increased GLUT4 and Glycogen Synthase Expression in the Skeletal Muscle. Evidence-Based Complementary and Alternative Medicine, 2022. https://doi.org/10.1155/2022/5372103
Mendeley helps you to discover research relevant for your work.