Realistic 3D simulations of the tunnelling process are increasingly required to investigate the interactions between machine-driven tunnel construction and the surrounding soil in order to provide reliable estimates of the expected settlements and associated risks of damage for existing structures, in particular in urban tunnelling projects. To accomplish the step from large-scale computational analysis to real-time predictions of expected settlements during tunnel construction, the focus of this paper is laid on the generation of a numerically efficient hybrid surrogate modelling strategy, combining Gappy proper orthogonal decomposition (GPOD) and recurrent neural networks (RNN). In this hybrid RNN-GPOD surrogate model, the RNN is employed to extrapolate the time variant settlements at several monitoring points within an investigated surface area and GPOD is utilised to predict the whole field of surface settlements based on the RNN predictions and a POD radial basis functions approximation. Both parts of the surrogate model are created based on results of finite element simulations from geotechnical and process parameters varied within the range of intervals given in the design stage of a tunnel project. In the construction stage, the hybrid surrogate model is applied for real-time reliability analyses of the mechanised tunnelling process to support the machine operator in steering the tunnel boring machine.
CITATION STYLE
Cao, B. T., Freitag, S., & Meschke, G. (2016). A hybrid RNN-GPOD surrogate model for real-time settlement predictions in mechanised tunnelling. Advanced Modeling and Simulation in Engineering Sciences, 3(1). https://doi.org/10.1186/s40323-016-0057-9
Mendeley helps you to discover research relevant for your work.