Inefficiency of IDS static anomaly detectors in real-world networks

5Citations
Citations of this article
24Readers
Mendeley users who have this article in their library.

Abstract

A wide range of IDS implementations with anomaly detection modules have been deployed. In general, those modules depend on intrusion knowledge databases, such as Knowledge Discovery Dataset (KDD99), Center for Applied Internet Data Analysis (CAIDA) or Community Resource for Archiving Wireless Data at Dartmouth (CRAWDAD), among others. Once the database is analyzed and a machine learning method is employed to generate detectors, some classes of new detectors are created. Thereafter, detectors are supposed to be deployed in real network environments in order to achieve detection with good results for false positives and detection rates. Since the traffic behavior is quite different according to the user's network activities over available services, restrictions and applications, it is supposed that behavioral-based detectors are not well suited to all kind of networks. This paper presents the differences of detection results between some network scenarios by applying traditional detectors that were calculated with artificial neural networks. The same detector is deployed in different scenarios to measure the efficiency or inefficiency of static training detectors.

Cite

CITATION STYLE

APA

Guillen, E., Sánchez, J., & Paez, R. (2015). Inefficiency of IDS static anomaly detectors in real-world networks. Future Internet, 7(2), 94–109. https://doi.org/10.3390/fi7020094

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free