The objective of this paper is to effectively use soybean straw biomass resources and decrease the negative effects of using synthetic resin. Soybean straw was ground through a wet process then hot-pressed to make biodegradable fiberboard (bio-board) without any binder. The effect of heating temperature on mechanical properties and dimensional stability performance of produced bio-board was investigated. Bonding quality and chemical changes of the bio-board were also evaluated using scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. The moisture content decreased from 12.5% to 3.4% with the increase of heating temperature. Meanwhile, most mechanical properties of bio-board improved. However, an excessive heating temperature, especially at 230 °C, did not significantly promote the improvement of most mechanical properties. However, the dimensional stability performance of the bio-board was greatly improved from 140 °C to 230 °C. Overall, the results showed that bio-board could be made by using soybean straw without any synthetic resin. Heating temperature plays a significant role in affecting the properties of bio-board. The refined bio-board is expected to be used as a packaging material, heat insulation in architecture, and mulch film for agricultural purposes.
CITATION STYLE
Song, X., Wang, X., & Kito, K. (2020). Effects of heating temperature on the properties of bio-board manufactured by using soybean straw. Materials, 13(3). https://doi.org/10.3390/ma13030662
Mendeley helps you to discover research relevant for your work.