Effect of insecticides and plutella xylostella (Lepidoptera: Plutellidae) genotype on a predator and parasitoid and implications for the evolution of insecticide resistance

16Citations
Citations of this article
38Readers
Mendeley users who have this article in their library.

Abstract

In the laboratory and in cages in the greenhouse, we evaluated the toxicity of two insecticides (lambda-cyhalothrin and spinosad) on the parasitoid, Diadegma insulare (Cresson), and the predator, Coleomegilla maculate (DeGeer), both natural enemies of the diamondback moth, Plutella xylostella (L.). Lambda-cyhalothrin was very toxic to both natural enemies. Spinosad was less toxic to C. maculata adults and larvae, and slightly toxic to D. insulare. Both natural enemies suppressed P. xylostella populations in cages with 80% spinosad-treated and 20% nontreated plants; such suppression was not seen when lambda-cyhalothrin was used. Using broccoli, Brassica oleracea L. variety italica, a common host for P. xylostella, we also studied direct and indirect effects of both natural enemies in the presence and absence of the two insecticides and to different P. xylostella genotypes: resistant to the insecticide, susceptible, or heterozygous. Neither natural enemy could distinguish host genotype if P. xylostella were feeding on nontreated plants. They could also not distinguish between larvae feeding on spinosad-treated plants and nontreated plants, but D. insulare could distinguish between larvae feeding on lambda-cyhalothrin treated and nontreated plants. Our studies suggest that lambda-cyhalothrin has direct toxicity to these two natural enemies, can affect their host foraging and acceptance of P. xylostella and consequently would not be compatible in conserving these natural enemies in a program for suppression of P. xylostella. In contrast, our studies suggest that treatment with spinosad has much less effect on these natural enemies and would allow them to help suppress populations of P. xylostella. These findings are discussed in relation to the evolution of insecticide resistance and suppression of the pest populations. © 2012 Entomological Society of America.

Cite

CITATION STYLE

APA

Liu, X., Chen, M., Collins, H. L., Onstad, D., Roush, R., Zhang, Q., & Shelton, A. M. (2012). Effect of insecticides and plutella xylostella (Lepidoptera: Plutellidae) genotype on a predator and parasitoid and implications for the evolution of insecticide resistance. Journal of Economic Entomology, 105(2), 354–362. https://doi.org/10.1603/EC11299

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free