Deep Learning with Automatic Data Augmentation for Segmenting Schisis Cavities in the Optical Coherence Tomography Images of X-Linked Juvenile Retinoschisis Patients

1Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

Abstract

X-linked juvenile retinoschisis (XLRS) is an inherited disorder characterized by retinal schisis cavities, which can be observed in optical coherence tomography (OCT) images. Monitoring disease progression necessitates the accurate segmentation and quantification of these cavities; yet, current manual methods are time consuming and result in subjective interpretations, highlighting the need for automated and precise solutions. We employed five state-of-the-art deep learning models—U-Net, U-Net++, Attention U-Net, Residual U-Net, and TransUNet—for the task, leveraging a dataset of 1500 OCT images from 30 patients. To enhance the models’ performance, we utilized data augmentation strategies that were optimized via deep reinforcement learning. The deep learning models achieved a human-equivalent accuracy level in the segmentation of schisis cavities, with U-Net++ surpassing others by attaining an accuracy of 0.9927 and a Dice coefficient of 0.8568. By utilizing reinforcement-learning-based automatic data augmentation, deep learning segmentation models demonstrate a robust and precise method for the automated segmentation of schisis cavities in OCT images. These findings are a promising step toward enhancing clinical evaluation and treatment planning for XLRS.

Cite

CITATION STYLE

APA

Wei, X., Li, H., Zhu, T., Li, W., Li, Y., & Sui, R. (2023). Deep Learning with Automatic Data Augmentation for Segmenting Schisis Cavities in the Optical Coherence Tomography Images of X-Linked Juvenile Retinoschisis Patients. Diagnostics, 13(19). https://doi.org/10.3390/diagnostics13193035

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free