We report the room temperature synthesis of spherical millimeter-size polyurea (PUA) aerogel beads. Wet-gels of said beads were obtained by dripping a propylene carbonate solution of an aliphatic triisocyanate based on isocyanurate nodes into a mixture of ethylenediamine and heavy mineral oil. Drying the resulting wet spherical gels with supercritical fluid (SCF) CO2 afforded spherical aerogel beads with a mean diameter of 2.7 mm, and a narrow size distribution (full width at half maximum: 0.4 mm). Spherical PUA aerogel beads had low density (0.166 ± 0.001 g cm–3), high porosity (87% v/v) and high surface area (197 m2 g–1). IR,1H magic angle spinning (MAS) and13C cross-polarization magic angle spinning (CPMAS) NMR showed the characteristic peaks of urea and the isocyanurate ring. Scanning electron microscopy (SEM) showed the presence of a thin, yet porous skin on the surface of the beads with a different (denser) morphology than their interior. The synthetic method shown here is simple, cost-efficient and suitable for large-scale production of PUA aerogel beads.
CITATION STYLE
Chriti, D., Raptopoulos, G., Papastergiou, M., & Paraskevopoulou, P. (2018). Millimeter-size spherical polyurea aerogel beads with narrow size distribution. Gels, 4(3). https://doi.org/10.3390/gels4030066
Mendeley helps you to discover research relevant for your work.