Polar magnetic materials exhibiting appreciable asymmetric exchange interactions can po-tentially host new topological states of matter such as vortex-like spin textures; however, realiza-tions have been mostly limited to half-integer spins due to rare numbers of integer spin systems with broken spatial inversion lattice symmetries. Here, we studied the structure and magnetic properties of the S = 1 integer spin polar magnet β-Ni(IO3)2 (Ni2+, d8,3F). We synthesized single crystals and bulk polycrystalline samples of β-Ni(IO3)2 by combining low-temperature chemistry techniques and thermal analysis and characterized its crystal structure and physical properties. Single crystal X-ray and powder X-ray diffraction measurements demonstrated that β-Ni(IO3)2 crystallizes in the noncentrosymmetric polar monoclinic structure with space group P21. The combination of the mac-roscopic electric polarization driven by the coalignment of the (IO3)− trigonal pyramids along the b axis and the S = 1 state of the Ni2+ cation was chosen to investigate integer spin and lattice dynamics in magnetism. The effective magnetic moment of Ni2+ was extracted from magnetization measurements to be 3.2(1) µB, confirming the S = 1 integer spin state of Ni2+ with some orbital contribution. β-Ni(IO3)2 undergoes a magnetic ordering at T = 3 K at a low magnetic field, μ0H = 0.1 T; the phase transition, nevertheless, is suppressed at a higher field, μ0H = 3 T. An anomaly resembling a phase transition is observed at T ≈ 2.7 K in the Cp/T vs. T plot, which is the approximate temperature of the magnetic phase transition of the material, indicating that the transition is magnetically driven. This work offers a useful route for exploring integer spin noncentrosymmetric materials, broaden-ing the phase space of polar magnet candidates, which can harbor new topological spin physics.
CITATION STYLE
Oyeka, E. E., Winiarski, M. J., & Tran, T. T. (2021). Study of integer spin s = 1 in the polar magnet β-ni(Io3)2. Molecules, 26(23). https://doi.org/10.3390/molecules26237210
Mendeley helps you to discover research relevant for your work.