Retinal Glycoprotein Enrichment by Concanavalin A Enabled Identification of Novel Membrane Autoantigen Synaptotagmin-1 in Equine Recurrent Uveitis

12Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

Abstract

Complete knowledge of autoantigen spectra is crucial for understanding pathomechanisms of autoimmune diseases like equine recurrent uveitis (ERU), a spontaneous model for human autoimmune uveitis. While several ERU autoantigens were identified previously, no membrane protein was found so far. As there is a great overlap between glycoproteins and membrane proteins, the aim of this study was to test whether pre-enrichment of retinal glycoproteins by ConA affinity is an effective tool to detect autoantigen candidates among membrane proteins. In 1D Western blots, the glycoprotein preparation allowed detection of IgG reactions to low abundant proteins in sera of ERU patients. Synaptotagmin-1, a Ca2+-sensing protein in synaptic vesicles, was identified as autoantigen candidate from the pre-enriched glycoprotein fraction by mass spectrometry and was validated as a highly prevalent autoantigen by enzyme-linked immunosorbent assay. Analysis of Syt1 expression in retinas of ERU cases showed a downregulation in the majority of ERU affected retinas to 24%. Results pointed to a dysregulation of retinal neurotransmitter release in ERU. Identification of synaptotagmin-1, the first cell membrane associated autoantigen in this spontaneous autoimmune disease, demonstrated that examination of tissue fractions can lead to the discovery of previously undetected novel autoantigens. Further experiments will address its role in ERU pathology. © 2012 Swadzba et al.

Cite

CITATION STYLE

APA

Swadzba, M. E., Hauck, S. M., Naim, H. Y., Amann, B., Deeg, C. A., & Chatenoud, L. (2012). Retinal Glycoprotein Enrichment by Concanavalin A Enabled Identification of Novel Membrane Autoantigen Synaptotagmin-1 in Equine Recurrent Uveitis. PLoS ONE, 7(12). https://doi.org/10.1371/journal.pone.0050929

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free