Determinants of nucleotide sugar recognition in an archaeon DNA polymerase

106Citations
Citations of this article
74Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Vent DNA polymerase normally discriminates strongly against incorporation of ribonucleotides, 3'-deoxyribonucleotides (such as cordycepin) and 2',3'-dideoxyribonucleotides. To explore the basis for this discrimination we have generated a family of variants with point mutations of residues in conserved Regions II and III and assayed incorporation of nucleotides with modified sugars by these variants, all of which were created in an exonuclease-deficient form of the enzyme. A Y412V variant incorporates ribonucleotides at least 200-fold more efficiently than the wild-type enzyme, consistent with Y412 acting as a 'steric gate' to specifically exclude ribonucleotides. The most striking variants tested involved changes to A488, a residue predicted to be facing away from the nucleotide binding site. The pattern of relaxed specificity at this position roughly correlates with the size of the substituted amino acid sidechain and affects a variety of modified nucleotide sugars.

Cite

CITATION STYLE

APA

Gardner, A. F., & Jack, W. E. (1999). Determinants of nucleotide sugar recognition in an archaeon DNA polymerase. Nucleic Acids Research, 27(12), 2545–2553. https://doi.org/10.1093/nar/27.12.2545

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free