How intrinsically disordered proteins and regions evade degradation by cellular machinery evolved to recognize unfolded and misfolded chains remains a vexing question. One potential means by which this can occur is the disorder is transient in nature. That is, the disorder exists just long enough for it to be bound by a partner biomolecule and fold. A review of 30 y of studies of calmodulin’s activation of calcineurin suggests that the regulatory domain of this vital phosphatase is a transiently disordered region. During activation, the regulatory domain progresses from a folded state, to disordered, followed by folding upon being bound by calmodulin. The transient disordered state of this domain is part of a critical intermediate state that facilitates the rapid binding of calmodulin. Building upon “fly-casting” as a means of facilitating partner binding, the mechanism by which calcineurin undergoes activation and subsequent deactivation could be considered “catch and release.
CITATION STYLE
Creamer, T. P. (2013). Transient disorder. Intrinsically Disordered Proteins, 1(1), e26412. https://doi.org/10.4161/idp.26412
Mendeley helps you to discover research relevant for your work.