Molecular Mechanisms Underlying the Anti-Inflammatory Properties of (R)-(-)-Carvone: Potential Roles of JNK1, Nrf2 and NF-κB

4Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

Abstract

To explore the molecular mechanisms underlying the anti-inflammatory activity of (R)-(-)-carvone, we evaluated its ability to inhibit the signaling pathways involving the mitogen-activated protein kinases (MAPKs) and the transcription factor, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). (R)-(-)-carvone significantly decreased c-Jun N-terminal kinase (JNK) 1phosphorylation, but not that of the other MAPKs, induced by bacterial lipopolysaccharides (LPS) in the RAW 264.7 macrophage cell line. Although (R)-(-)-carvone significantly inhibited resynthesis of the inhibitor of NF-κB (IκB)-α induced by LPS, it did not interfere with the canonical NF-κB activation pathway, suggesting that it may interfere with its transcriptional activity. (R)-(-)-carvone also showed a tendency to decrease the levels of acetylated NF-κB/p65 in the nucleus, without affecting the activity and protein levels of Sirtuin-1, the major NF-κB/p65 deacetylating enzyme. Interestingly, the nuclear protein levels of the transcription factor, nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and the expression of its target,, heme oxygenase-1 (HO-1), an antioxidant enzyme, also showed a tendency to increase in the presence of (R)-(-)-carvone. Taken together, these results suggest that the ability of (R)-(-)-carvone to inhibit JNK1 and to activate Nrf2 can underlie its capacity to inhibit the transcriptional activity of NF-κB and the expression of its target genes. This study highlights the diversity of molecular mechanisms that can be involved in the anti-inflammatory activity of monoterpenes.

Cite

CITATION STYLE

APA

Sousa, C., Neves, B. M., Leitão, A. J., & Mendes, A. F. (2023). Molecular Mechanisms Underlying the Anti-Inflammatory Properties of (R)-(-)-Carvone: Potential Roles of JNK1, Nrf2 and NF-κB. Pharmaceutics, 15(1). https://doi.org/10.3390/pharmaceutics15010249

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free