Choosing experiments to accelerate collective discovery

140Citations
Citations of this article
314Readers
Mendeley users who have this article in their library.

Abstract

A scientist's choice of research problem affects his or her personal career trajectory. Scientists' combined choices affect the direction and efficiency of scientific discovery as awhole. In this paper, we infer preferences that shape problem selection from patterns of published findings and then quantify their efficiency. We represent research problems as links between scientific entities in a knowledge network. We then build a generative model of discovery informed by qualitative research on scientific problem selection. We map salient features from this literature to key network properties: an entity's importance corresponds to its degree centrality, and a problem's difficulty corresponds to the network distance it spans. Drawing on millions of papers and patents published over 30 years, we use this model to infer the typical research strategy used to explore chemical relationships in biomedicine. This strategy generates conservative research choices focused on building up knowledge around important molecules. These choices become more conservative over time. The observed strategy is efficient for initial exploration of the network and supports scientific careers that require steady output, but is inefficient for science as a whole. Through supercomputer experiments on a sample of the network, we study thousands of alternatives and identify strategies much more efficient at exploring mature knowledge networks. We find that increased risk-taking and the publication of experimental failures would substantially improve the speed of discovery. We consider institutional shifts in grant making, evaluation, and publication that would help realize these efficiencies.

Cite

CITATION STYLE

APA

Rzhetsky, A., Foster, J. G., Foster, I. T., & Evans, J. A. (2015). Choosing experiments to accelerate collective discovery. Proceedings of the National Academy of Sciences of the United States of America, 112(47), 14569–14574. https://doi.org/10.1073/pnas.1509757112

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free