Improving transfer learning for software cross-project defect prediction

1Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Software cross-project defect prediction (CPDP) makes use of cross-project (CP) data to overcome the lack of data necessary to train well-performing software defect prediction (SDP) classifiers in the early stage of new software projects. Since the CP data (known as the source) may be different from the new project’s data (known as the target), this makes it difficult for CPDP classifiers to perform well. In particular, it is a mismatch of data distributions between source and target that creates this difficulty. Transfer learning-based CPDP classifiers are designed to minimize these distribution differences. The first Transfer learning-based CPDP classifiers treated these differences equally, thereby degrading prediction performance. To this end, recent research has the Weighted Balanced Distribution Adaptation (W-BDA) method to leverage the importance of both distribution differences to improve classification performance. Although W-BDA has been shown to improve model performance in CPDP and tackle the class imbalance by balancing the class proportion of each domain, research to date has failed to consider model performance in light of increasing target data. We provide the first investigation studying the effects of increasing the target data when leveraging the importance of both distribution differences. We extend the initial W-BDA method and call this extension the W-BDA+ method. To evaluate the effectiveness of W-BDA+ for improving CPDP performance, we conduct eight experiments on 18 projects from four datasets, where data sampling was performed with different sampling methods. Data sampling was only performed on the baseline methods and not on our proposed W-BDA+ and the original W-BDA because data sampling issues do not exist for these two methods. We evaluate our method using four complementary indicators (i.e., Balanced Accuracy, AUC, F-measure and G-Measure). Our findings reveal an average improvement of 6%, 7.5%, 10% and 12% for these four indicators when W-BDA+ is compared to the original W-BDA and five other baseline methods (for all four of the sampling methods used). Also, as the target to source ratio is increased with different sampling methods, we observe a decrease in performance for the original W-BDA, with our W-BDA+ approach outperforming the original W-BDA in most cases. Our results highlight the importance of having an awareness of the effect of the increasing availability of target data in CPDP scenarios when using a method that can handle the class imbalance problem.

Cite

CITATION STYLE

APA

Omondiagbe, O. P., Licorish, S. A., & MacDonell, S. G. (2024). Improving transfer learning for software cross-project defect prediction. Applied Intelligence, 54(7), 5593–5616. https://doi.org/10.1007/s10489-024-05459-1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free