The production of banana Cavendish AAA in Latin America and the Caribbean (LAC) constitutes a major source of income in GDP (gross domestic product) of each country. The Muse spp. AAA Group Cavendish is exposed to multiple pests and foliar diseases; whose control increases the economic value for crop maintenance. The black Sigatoka caused by the fungus Mycosphaerella fijiensis is one of the most representative conditions. In LAC the conventional method of treatment against black Sigatoka is the use of fungicides, which affect human health and the environment. For this reason, an efficient alternative to increase the resistance of the plants to the black Sigatoka, is the use of techniques of molecular biology that allows the creation of Genetically Modified Organisms (GMO). This paper reviews the identification of genes in the Musa Grain Nain and Williams to increase resistance to the fungus Mycosphaerella fijiensis. It also details the alternative techniques for modifying banana bulbs as the use of CRISPR/Cas9 for gene modification would be a powerful tool to achieve this goal because it shows successful results in the treatment of Phytoene desaturate (PDS) that causes albinism and dwarfism in plants. On the other hand, it is also analyzed the possible introduction of GMO bulbs in the main banana exporting country of the world, Ecuador, describing the possible competitive advantages that the country would obtain against the international market.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Torres, L. C., & Zamora, L. C. (2018). Benefits in Latin America and the Caribbean about production of Cavendish AAA banana resistant to black Sigatoka. Bionatura. Centro de Biotecnologia y Biomedicina, Clinical Biotec. Universidad Católica del Oriente (UCO), Univesidad Yachay Tech. https://doi.org/10.21931/RB/2018.03.04.9