With the development of artificial intelligence technology, virtual reality technology has been widely used in the medical and entertainment fields, as well as other fields. This study is supported by the 3D modeling platform in UE4 platform technology and designs a 3D pose model based on inertial sensors through blueprint language and C++ programming. It can vividly display changes in gait, as well as changes in angles and displacements of 12 parts such as the big and small legs and arms. It can be used to combine with the module of capturing motion which is based on inertial sensors to display the 3D posture of the human body in real-time and analyze the motion data. Each part of the model contains an independent coordinate system, which can analyze the angle and displacement changes of any part of the model. All joints of the model are interrelated, the motion data can be automatically calibrated and corrected, and errors measured by an inertial sensor can be compensated, so that each joint of the model will not separate from the whole model and there will not occur actions that against the human body’s structures, improving the accuracy of the data. The 3D pose model designed in this study can correct motion data in real time and display the human body’s motion posture, which has great application prospects in the field of gait analysis.
CITATION STYLE
Liu, R., Liu, L., Ma, G., Feng, S., Mu, Y., Meng, D., … Cai, E. (2023). Visual Gait Analysis Based on UE4. Sensors, 23(12). https://doi.org/10.3390/s23125463
Mendeley helps you to discover research relevant for your work.