On-chip multiplexed single-cell patterning and controllable intracellular delivery

42Citations
Citations of this article
55Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Conventional electroporation approaches show limitations in the delivery of macromolecules in vitro and in vivo. These limitations include low efficiency, noticeable cell damage and nonuniform delivery of cells. Here, we present a simple 3D electroporation platform that enables massively parallel single-cell manipulation and the intracellular delivery of macromolecules and small molecules. A pyramid pit micropore array chip was fabricated based on a silicon wet-etching method. A controllable vacuum system was adopted to trap a single cell on each micropore. Using this chip, safe single-cell electroporation was performed at low voltage. Cargoes of various sizes ranging from oligonucleotides (molecular beacons, 22 bp) to plasmid DNA (CRISPR-Cas9 expression vectors, >9 kb) were delivered into targeted cells with a significantly higher transfection efficiency than that of multiple benchmark methods (e.g., commercial electroporation devices and Lipofectamine). The delivered dose of the chemotherapeutic drug could be controlled by adjusting the applied voltage. By using CRISPR-Cas9 transfection with this system, the p62 gene and CXCR7 gene were knocked out in tumor cells, which effectively inhibited their cellular activity. Overall, this vacuum-assisted micropore array platform provides a simple, efficient, high-throughput intracellular delivery method that may facilitate on-chip cell manipulation, intracellular investigation and cancer therapy.

Cite

CITATION STYLE

APA

Dong, Z., Jiao, Y., Xie, B., Hao, Y., Wang, P., Liu, Y., … Chang, L. (2020). On-chip multiplexed single-cell patterning and controllable intracellular delivery. Microsystems and Nanoengineering, 6(1). https://doi.org/10.1038/s41378-019-0112-z

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free