For cancer chemotherapy, a tumor regression without any surgical resection and severe side effects is greatly preferred to merely slowing down the growth of tumors. Here, we report a formulation composed of irinotecan (IRN) and poly(D,L-lactide-co-glycolide)-b-poly(ethylene glycol)-b-poly(D,L-lactide-co- glycolide) (PLGA-PEG-PLGA). IRN is a clinically used antitumor drug with active and inactive chemical forms in equilibrium, and the major form at physiological conditions is inactive but still has side effects. The aqueous solution of the PLGA-PEG-PLGA is a sol at room temperature and physically gels at body temperature, forming a thermogel. We successfully mixed this moderately soluble drug into the amphiphilic copolymer aqueous solution for the first time. The mixture was subcutaneously injected into nude mice with xenografted SW620 human colon tumors. Excellent in vivo antitumor efficacy was observed in the group that received the IRN-loaded thermogel. The tumor was significantly regressed after being treated with the IRN/thermogel, and the side effects (blood toxicity and body weight decrease) were very mild. These results might be attributed to the ideal sustained release profile and period of release of the drug from the thermogel and to the significant enhancement of the fraction of the active form of the drug by the thermogel.
CITATION STYLE
Ci, T., Chen, L., Yu, L., & Ding, J. (2014). Tumor regression achieved by encapsulating a moderately soluble drug into a polymeric thermogel. Scientific Reports, 4. https://doi.org/10.1038/srep05473
Mendeley helps you to discover research relevant for your work.