Objectives: To evaluate the influence of adhesive core buildup designs - 4-mm buildup, 2-mm buildup, and no buildup (endocrown) - on the fatigue resistance and failure mode of endodontically treated molar teeth restored with resin nanoceramic (RNC) CAD/CAM complete crowns placed with self-adhesive resin cement. Methods and Materials: Forty-five extracted molars were decoronated at the level of the cementoenamel junction, and the roots were endodontically treated. Specimens received different Filtek Z100 adhesive core buildups (4-mm buildup, 2-mm buildup, and no buildup, endocrown preparation) and were restored with Cerec 3 CAD/CAM RNC crowns (Lava Ultimate). Restorations (n=15) and prepared teeth were treated with airborne-particle abrasion, followed by cementation with RelyX Unicem 2 Automix. Specimens were then subjected to cyclic isometric loading at 10 Hz, beginning with a load of 200 N (for 5000 cycles), followed by stages of 400, 600, 800, 1000, 1200, and 1400 N at a maximum of 30,000 cycles each. Specimens were loaded until failure or to a maximum of 185,000 cycles (10-mm-diameter composite resin sphere antagonist). The failure mode was assessed: "catastrophic" (tooth/root fracture that would require tooth extraction), "possibly reparable" (cohesive/adhesive failure with fragment and minor damage, chip or crack, of underlying tooth structure), or "reparable" fracture (cohesive or cohesive/adhesive fracture of restoration only). Groups were compared using the life table survival analysis. Intact specimens were loaded to failure and compared with one-way analysis of variance. Results: All specimens survived the fatigue test until the 800 N-step. The survival rates for 4-mm, 2-mm, and no buildup (endocrown) were 53%, 87%, and 87%, respectively, and were not statistically different even though crowns with 2-mm buildups only started to fail at 1200 N. Minor cohesive chips were detected in many samples despite having survived all 185,000 cycles. Postfatigue load-to-failure ranged from 2969 N with 4-mm buildup (eight specimens), 2794 N for 2-mm buildup (13 specimens), and 2606 N for endocrowns (13 specimens) and were also not statistically different. There were only two catastrophic failures during the fatigue test and small subgingival delamination fractures and cracks (only with 4-mm buildup). All specimens in the load-to-failure test exhibited nonrestorable catastrophic fractures. Conclusions: There was no influence of the buildup design on the performance of endodontically treated molars restored with RNC CAD/CAM complete crowns placed with self-adhesive cement. All restoration designs survived the normal range of masticatory forces. Failure mode tended to be more favorable with the 2-mm buildup or no buildup (endocrown).
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Magne, P., Carvalho, A. O., Bruzi, G., Anderson, R. E., Maia, H. P., & Giannini, M. (2014). Influence of no-ferrule and no-post buildup design on the fatigue resistance of endodontically treated molars restored with resin nanoceramic CAD/CAM crowns. Operative Dentistry, 39(6), 595–602. https://doi.org/10.2341/13-004-L