Detecting defects on solid wood panels based on an improved SSD algorithm

76Citations
Citations of this article
66Readers
Mendeley users who have this article in their library.

Abstract

Wood is widely used in construction, the home, and art applications all over the world because of its good mechanical properties and aesthetic value. However, because the growth and preservation of wood are greatly affected by the environment, it often contains different types of defects that affect its performance and ornamental value. To solve the issues of high labor costs and low efficiency in the detection of wood defects, we used machine vision and deep learning methods in this work. A color charge-coupled device camera was used to collect the surface images of two types of wood from Akagi and Pinus sylvestris trees. A total of 500 images with a size of 200 × 200 pixels containing wood knots, dead knots, and checking defects were obtained. The transfer learning method was used to apply the single-shot multibox detector (SSD), a target detection algorithm and the DenseNet network was introduced to improve the algorithm. The mean average precision for detecting the three types of defects, live knots, dead knots and checking was 96.1%.

Cite

CITATION STYLE

APA

Ding, F., Zhuang, Z., Liu, Y., Jiang, D., Yan, X., & Wang, Z. (2020). Detecting defects on solid wood panels based on an improved SSD algorithm. Sensors (Switzerland), 20(18), 1–17. https://doi.org/10.3390/s20185315

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free