Tuning nanoscale friction by applying weak magnetic fields to reorient adsorbed oxygen molecules

3Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

Sliding friction levels of thin (1–2 monolayers) and thick (~10 monolayers) oxygen films adsorbed on nickel and gold at 47.5 K have been measured by means of a quartz crystal microbalance (QCM) technique. Friction levels for the thin (thick) films on nickel in the presence of a weak magnetic field were observed to be approximately 30% (50%) lower than those recorded in the absence of the external field. Friction levels for thin films on gold were meanwhile observed to be substantially increased in the presence of the field. Magnetically-induced structural reorientation (magnetostriction) and/or realignment of adlayer spins, which respectively reduce structural and magnetic interfacial corrugation and commensurability, appear likely mechanisms underlying the observed field-induced reductions in friction for the nickel samples. Eddy current formation in the gold substrates may account for the increased friction levels in this system. The work demonstrates the role of magnetic effects in model systems that are highly amenable to theoretical studies and modeling.

Cite

CITATION STYLE

APA

Fredricks, Z. B., Stevens, K. M., Kenny, S. G., Acharya, B., & Krim, J. (2019). Tuning nanoscale friction by applying weak magnetic fields to reorient adsorbed oxygen molecules. Condensed Matter, 4(1), 1–13. https://doi.org/10.3390/condmat4010001

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free