High cloud increase in a perturbed SST experiment with a global nonhydrostatic model including explicit convective processes

38Citations
Citations of this article
44Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Results are presented from a series of sensitivity tests in idealized global warming experiments using the global nonhydrostatic model, NICAM, in which convection at scales of 7-14 km is explicitly resolved. All have a strong positive longwave cloud feedback larger than that seen in conventional GCMs with parameterized convection. Consequently, the global mean net outgoing radiation decreases in response to increased sea surface temperatures. Large increases in high clouds with tops between 180 and 50 hPa are found, and these changes contribute the most to this longwave cloud feedback. Relative humidity and upper tropospheric temperature also increases strongly, again more so than typically seen in conventional GCMs. The magnitude of the response varies considerably between different versions of NICAM. Most of the NICAM control simulations show large overestimates in cloud fraction between 180 and 50 hPa compared to observations. The changes in cloud fraction in the upper troposphere are strongly correlated with their control values. Versions of NICAM with stronger cloud feedbacks have large positive biases in high-top cloud amount and temperature in the free troposphere in their control simulations. The version which has the best agreement with the observations in this regard has the weakest longwave cloud feedback; however, this is still more strongly positive than that typically seen in conventional GCMs. These results demonstrate the potential for stronger high cloud fraction feedbacks in climate warming scenarios than currently predicted by conventional GCMs and highlight the potential relevance of deep convective processes. Key Points Larger positive longwave feedback in NICAM than in conventional GCMs High cloud fraction increases in NICAM in increased SST experiments Possibility of larger high cloud fraction feedback in future models

Cite

CITATION STYLE

APA

Tsushima, Y., Iga, S. I., Tomita, H., Satoh, M., Noda, A. T., & Webb, M. J. (2015). High cloud increase in a perturbed SST experiment with a global nonhydrostatic model including explicit convective processes. Journal of Advances in Modeling Earth Systems, 6(3), 571–585. https://doi.org/10.1002/2013MS000301

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free