Research on Grape-Planting Structure Perception Method Based on Unmanned Aerial Vehicle Multispectral Images in the Field

0Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

In order to accurately obtain the distribution of large-field grape-planting sites and their planting information in complex environments, the unmanned aerial vehicle (UAV) multispectral image semantic segmentation model based on improved DeepLabV3+ is used to solve the problem that large-field grapes in complex environments are affected by factors such as scattered planting sites and complex background environment of planting sites, which makes the identification of planting areas less accurate and more difficult to manage. In this paper, firstly, the standard deviation (SD) and interband correlation of UAV multispectral images were calculated to obtain the best band combinations for large-field grape images, and five preferred texture features and two preferred vegetation indices were screened using color space transformation and grayscale coevolution matrix. Then, supervised classification methods, such as maximum likelihood (ML), random forest (RF), and support vector machine (SVM), unsupervised classification methods, such as the Iterative Self-organizing Data Analysis Techniques Algorithm (ISO DATA) model and an improved DeepLabV3+ model, are used to evaluate the accuracy of each model in combination with the field visual translation results to obtain the best classification model. Finally, the effectiveness of the classification features on the best model is verified. The results showed that among the four machine learning methods, SVM obtained the best overall classification accuracy of the model; the DeepLabV3+ deep learning scheme based on spectral information + texture + vegetation index + digital surface model (DSM) obtained the best accuracy of overall accuracy (OA) and frequency weight intersection over union (FW-IOU) of 87.48% and 83.23%, respectively, and the grape plantation area relative error of extraction was 1.9%. This collection scheme provides a research basis for accurate interpretation of the planting structure of large-field grapes.

Cite

CITATION STYLE

APA

Qu, A., Yan, Z., Wei, H., Ma, L., Gu, R., Li, Q., … Wang, Y. (2022). Research on Grape-Planting Structure Perception Method Based on Unmanned Aerial Vehicle Multispectral Images in the Field. Agriculture (Switzerland), 12(11). https://doi.org/10.3390/agriculture12111894

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free