© 2017 Society of Photo-Optical Instrumentation Engineers (SPIE). We present an automatic method, termed as the principal component analysis network with composite kernel (PCANet-CK), for the classification of three-dimensional (3-D) retinal optical coherence tomography (OCT) images. Specifically, the proposed PCANet-CK method first utilizes the PCANet to automatically learn features from each B-scan of the 3-D retinal OCT images. Then, multiple kernels are separately applied to a set of very important features of the B-scans and these kernels are fused together, which can jointly exploit the correlations among features of the 3-D OCT images. Finally, the fused (composite) kernel is incorporated into an extreme learning machine for the OCT image classification. We tested our proposed algorithm on two real 3-D spectral domain OCT (SD-OCT) datasets (of normal subjects and subjects with the macular edema and age-related macular degeneration), which demonstrated its effectiveness.
CITATION STYLE
Fang, L., & Wang, C. (2017). Automatic classification of retinal three-dimensional optical coherence tomography images using principal component analysis network with composite kernels. Journal of Biomedical Optics, 22(11), 1. https://doi.org/10.1117/1.jbo.22.11.116011
Mendeley helps you to discover research relevant for your work.