3D-printed polylactic acid (PLA) scaffolds have been demonstrated as being a promising tool for the development of tissue-engineered replacements of bone. However, this material lacks a suitable surface chemistry to efficiently interact with extracellular proteins and, consequently, to integrate into the surrounding tissue when implanted in vivo. In this study, aloe vera coatings have been proposed as a strategy to improve the bioaffinity of this type of structures. Aloe vera coatings were applied at three different values of pH (3, 4 and 5), after treating the surface of the PLA scaffolds with oxygen plasma. The surface modification of the material has been assessed through X-ray photoelectron spectroscopy (XPS) analysis and water contact angle measurements. In addition, the evaluation of the enzymatic degradation of the structures showed that the pH of the aloe vera extracts used as coating influences the degradation rate of the PLA-based scaffolds. Finally, the cell metabolic activity of an in vitro culture of human fetal osteoblastic cells on the samples revealed an improvement of this parameter on aloe vera coated samples, especially for those treated at pH 3. Hence, these structures showed potential for being applied for bone tissue regeneration.
CITATION STYLE
Donate, R., Alemán-Domínguez, M. E., Monzón, M., Yu, J., Rodríguez-Esparragón, F., & Liu, C. (2020). Evaluation of aloe vera coated polylactic acid scaffolds for bone tissue engineering. Applied Sciences (Switzerland), 10(7). https://doi.org/10.3390/app10072576
Mendeley helps you to discover research relevant for your work.