Bayesian profiling of molecular signatures to predict event times

4Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background. It is of particular interest to identify cancer-specific molecular signatures for early diagnosis, monitoring effects of treatment and predicting patient survival time. Molecular information about patients is usually generated from high throughput technologies such as microarray and mass spectrometry. Statistically, we are challenged by the large number of candidates but only a small number of patients in the study, and the right-censored clinical data further complicate the analysis. Results. We present a two-stage procedure to profile molecular signatures for survival outcomes. Firstly, we group closely-related molecular features into linkage clusters, each portraying either similar or opposite functions and playing similar roles in prognosis; secondly, a Bayesian approach is developed to rank the centroids of these linkage clusters and provide a list of the main molecular features closely related to the outcome of interest. A simulation study showed the superior performance of our approach. When it was applied to data on diffuse large B-cell lymphoma (DLBCL), we were able to identify some new candidate signatures for disease prognosis. Conclusion. This multivariate approach provides researchers with a more reliable list of molecular features profiled in terms of their prognostic relationship to the event times, and generates dependable information for subsequent identification of prognostic molecular signatures through either biological procedures or further data analysis. © 2007 Zhang and Zhang; licensee BioMed Central Ltd.

Cite

CITATION STYLE

APA

Zhang, D., & Zhang, M. (2007). Bayesian profiling of molecular signatures to predict event times. Theoretical Biology and Medical Modelling, 4. https://doi.org/10.1186/1742-4682-4-3

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free