Segmentation of biological multivariate time-series data

25Citations
Citations of this article
95Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Time-series data from multicomponent systems capture the dynamics of the ongoing processes and reflect the interactions between the components. The progression of processes in such systems usually involves check-points and events at which the relationships between the components are altered in response to stimuli. Detecting these events together with the implicated components can help understand the temporal aspects of complex biological systems. Here we propose a regularized regression-based approach for identifying breakpoints and corresponding segments from multivariate time-series data. In combination with techniques from clustering, the approach also allows estimating the significance of the determined breakpoints as well as the key components implicated in the emergence of the breakpoints. Comparative analysis with the existing alternatives demonstrates the power of the approach to identify biologically meaningful breakpoints in diverse time-resolved transcriptomics data sets from the yeast Saccharomyces cerevisiae and the diatom Thalassiosira pseudonana.

Cite

CITATION STYLE

APA

Omranian, N., Mueller-Roeber, B., & Nikoloski, Z. (2015). Segmentation of biological multivariate time-series data. Scientific Reports, 5. https://doi.org/10.1038/srep08937

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free