Potentially toxic elements (PTEs) pollution occurs widely in soils due to various anthropogenic activities. Lead (Pb) and cadmium (Cd) coexist in soil frequently, threatening plant growth. To explore the interaction effect between Pb and Cd in Ficus parvifolia and the response of plant physiological characteristics to Pb and Cd stress, we designed a soil culture experiment. The experiment demonstrated that Pb stress improved leaf photosynthesis ability, while Cd stress inhibited it. Furthermore, Pb or Cd stress increased malonaldehyde (MDA) content, but plants were able to reduce it by increasing antioxidant enzyme activities. The presence of Pb could alleviate Cd phytotoxicity in plants by inhibiting Cd uptake and accumulation as well as increasing leaf photosynthesis and antioxidant ability. Pearson correlation analysis illustrated that the variability of Cd uptake and accumulation between Pb and Cd stress was related to plant biomass and antioxidant enzyme activities. This research will offer a new perspective on alleviating Cd phytotoxicity in plants.
CITATION STYLE
Li, Y., Cheng, X., Feng, C., & Huang, X. (2023). Interaction of Lead and Cadmium Reduced Cadmium Toxicity in Ficus parvifolia Seedlings. Toxics, 11(3). https://doi.org/10.3390/toxics11030271
Mendeley helps you to discover research relevant for your work.