The monocot lectin from the tubers of Arisaema erubescens (Wall.) Schott has been purified by consecutive hydrophobic chromatography and ion exchange chromatography methods. The molecular weight of this A. erubescens lectin (AEL) was determined to be about 12 kDa by high performance liquid chromatography (HPLC) and sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) methods. AEL could agglutinate rabbit erythrocytes. The haemagglutination activity of AEL was only inhibited by asialofetuin, while monosaccharide did not react. Rat paw edema and neutrophil migration models were used to investigate the pro-inflammatory activity of AEL. AEL (100 and 200 μg/paw) could induce significant rat paw edema. In addition, AEL (100, 200 and 300 μg/mL/cavity) could induce significant and dose-dependent neutrophil migration in the rat peritoneal cavities. Besides, AEL at doses ranging from 100 to 300 μg/mL/cavity could significantly increase the concentration of nitric oxide (NO), prostaglandin E 2 (PGE 2) and tumor necrosis factor alpha (TNF-α) in peritoneal fluid. As compared with control animals, 75% depletion in the number of resident cells following peritoneal lavage did not reduce the AEL-induced neutrophil migration. However, pre-treatment with 3% thioglycollate which increased the peritoneal macrophage population by 201%, enhanced the neutrophil migration induced by AEL (200 μg/mL/cavity) (p < 0.05). Reduction of peritoneal mast cell population by chronic treatment of rat peritoneal cavities with compound 48/80 (N-methyl-p-methoxyphenethylamine with formaldehyde) did not modify AEL-induced neutrophil migration. The results provided the basis for identifying the toxic components of A. erubescens and AEL could be a new useful tool for pro-inflammatory research. © 2011 by the authors; licensee MDPI, Basel, Switzerland.
CITATION STYLE
Liu, X. Q., Wu, H., Yu, H. L., Zhao, T. F., Pan, Y. Z., & Shi, R. J. (2011). Purification of a lectin from arisaema erubescens (wall.) schott and its pro-inflammatory effects. Molecules, 16(11), 9480–9494. https://doi.org/10.3390/molecules16119480
Mendeley helps you to discover research relevant for your work.