Process–structure–property relationships of copper parts manufactured by laser powder bed fusion

15Citations
Citations of this article
35Readers
Mendeley users who have this article in their library.

Abstract

The process–structure–property relationships of copper laser powder bed fusion (L-PBF)-produced parts made of high purity copper powder (99.9 wt %) are examined in this work. A nominal laser beam diameter of 100 μm with a continuous wavelength of 1080 nm was employed. A wide range of process parameters was considered in this study, including five levels of laser power in the range of 200 to 370 W, nine levels of scanning speed from 200 to 700 mm/s, six levels of hatch spacing from 50 to 150 μm, and two layer thickness values of 30 μm and 40 μm. The influence of preheating was also investigated. A maximum relative density of 96% was obtained at a laser power of 370 W, scanning speed of 500 mm/s, and hatch spacing of 100 μm. The results illustrated the significant influence of some parameters such as laser power and hatch spacing on the part quality. In addition, surface integrity was evaluated by surface roughness measurements, where the optimum Ra was measured at 8 μm ± 0.5 μm. X-ray photoelectron spectroscopy (XPS) and energy-dis-persive X-ray spectroscopy (EDX) were performed on the as-built samples to assess the impact of impurities on the L-PBF part characteristics. The highest electrical conductivity recorded for the optimum density-low contaminated coils was 81% IACS.

Cite

CITATION STYLE

APA

Abdelhafiz, M., Al-Rubaie, K. S., Emadi, A., & Elbestawi, M. A. (2021). Process–structure–property relationships of copper parts manufactured by laser powder bed fusion. Materials, 14(11). https://doi.org/10.3390/ma14112945

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free