Cyber-attacks are becoming more sophisticated and thereby presenting increasing challenges in accurately detecting intrusions. Failure to prevent the intrusions could degrade the credibility of security services, e.g. data confidentiality, integrity, and availability. Numerous intrusion detection methods have been proposed in the literature to tackle computer security threats, which can be broadly classified into Signature-based Intrusion Detection Systems (SIDS) and Anomaly-based Intrusion Detection Systems (AIDS). This survey paper presents a taxonomy of contemporary IDS, a comprehensive review of notable recent works, and an overview of the datasets commonly used for evaluation purposes. It also presents evasion techniques used by attackers to avoid detection and discusses future research challenges to counter such techniques so as to make computer systems more secure.
CITATION STYLE
Khraisat, A., Gondal, I., Vamplew, P., & Kamruzzaman, J. (2019). Survey of intrusion detection systems: techniques, datasets and challenges. Cybersecurity, 2(1). https://doi.org/10.1186/s42400-019-0038-7
Mendeley helps you to discover research relevant for your work.