Ovarian follicle development is a process regulated by various endocrine, paracrine and autocrine factors that act coordinately to promote follicle growth. However, the vast majority of follicles does not reach the pre-ovulatory stage but instead, undergo atresia by apoptosis. We have recently described a role for the somatic hyaluronidases (Hyal-1, Hyal-2, and Hyal-3) in ovarian follicular atresia and induction of granulosa cell apoptosis. Herein, we show that Hyal-1 but not Hyal-3 null mice have decreased apoptotic granulosa cells after the induction of atresia and an increased number of retrieved oocytes after stimulation of ovulation. Furthermore, young Hyal-1 null mice had a significantly higher number of primordial follicles than age matched wild-type animals. Recruitment of these follicles at puberty resulted in an increased number of primary and healthy preantral follicles in Hyal-1 null mice. Consequently, older Hyal-1 deficient female mice have prolonged fertility. At the molecular level, immature Hyal-1 null mice have decreased mRNA expression of follistatin and higher levels of phospho-Smad3 protein, resulting in increased levels of phospho-Akt in pubertal mice. Hyal-1 null ovarian follicles did not exhibit hyaluronan accumulation. For Hyal-3 null mice, compensation by Hyal-1 or Hyal-2 might be related to the lack of an ovarian phenotype. In conclusion, our results demonstrate that Hyal-1 plays a key role in the early phases of folliculogenesis by negatively regulating ovarian follicle growth and survival. Our findings add Hyal-1 as an ovarian regulator factor for follicle development, showing for the first time an interrelationship between this enzyme and the follistatin/activin/Smad3 pathway. © 2011 Wiley Periodicals, Inc.
CITATION STYLE
Dumaresq-Doiron, K., Edjekouane, L., Orimoto, A. M., Yoffou, P. H., Gushulak, L., Triggs-Raine, B., & Carmona, E. (2012). Hyal-1 but not Hyal-3 deficiency has an impact on ovarian folliculogenesis and female fertility by altering the follistatin/activin/Smad3 pathway and the apoptotic process. Journal of Cellular Physiology, 227(5), 1911–1922. https://doi.org/10.1002/jcp.22919
Mendeley helps you to discover research relevant for your work.