The resistance of delayed xenograft rejection to α(1,3)- galactosyltransferase gene inactivation and CD4 depletion in a mouse-to-at model

3Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

Critical to the prevention of xenograft loss is the prevention of delayed xenograft rejection (DXR), due to its resistance to conventional immunosuppression. The role of the carbohydrate galactose-α1,3-galactose (α1,3Gal) has been a matter of great debate and it has been proposed that the reaction between α1,3Gal epitopes on donor endothelial cells and recipient anti-α1,3Gal antibodies (Abs) may damage the graft during DXR. Recipient anti-α1,3Gal Abs are produced by CD4-dependent B cells. To test the above-mentioned hypothesis, hearts from α1,3Gal-free mice (GT-Ko mice), generated by α1,3-galactosyltransferase gene disruption, were transplanted to anti-α1,3Gal antibody-free Lew/Mol rats. This model consists of an α1,3Gal/α1,3Gal-antibody-free environment, eliminating a possible influence of this specific system on DXR. A subgroup of recipients were furthermore CD4 depleted in order to inhibit CD4-dependent B-cell antibody production. Rejected hearts were evaluated by light- and immunofluorescence microscopy. Treatment effects on recipient T-cell subsets and cytokine expression were analyzed by flow cytometry, while antibody production was measured by ELISA. All recipients developed DXR with no differences among the groups. DXR was related to thrombosis with IgG and IgM desposition in vessel walls, as well as macrophage and granulocyte accumulation in the myocardium. No complement C3, CD4 cells or NK cells were found. Flow cytometric analysis confirmed peripheral blood CD4 depletion and IFN-γ suppression in CD4 Ab-treated recipients. Finally, ELISA showed that specific anti-α1,3Gal Ab production was absent. However, Ab(s) against an unidentified Galα 1 were found among recipients. In our model, DXR is resistant to α,3-galactosyltransferase gene inactivation and CD4 depletion. However, other Galα 1 epitopes and antibodies may play a role during DXR. Further studies are needed to elucidate the precise pathways leading to DXR.

References Powered by Scopus

The α-1,3-galactosyltransferase knockout mouse: Implications for xenotransplantation

279Citations
N/AReaders
Get full text

The role of antibodies in acute vascular rejection of pig-to-baboon cardiac transplants

246Citations
N/AReaders
Get full text

Molecular barriers to xenotransplantation

174Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Dietary gluten reduces the number of intestinal regulatory T cells in mice

39Citations
N/AReaders
Get full text

FK778 in Experimental Xenotransplantation: A Detailed Analysis of Drug Efficacy

10Citations
N/AReaders
Get full text

Humoral immunity in xenotransplantation: B-cell tolerance and accommodation

5Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Hansen, A. B., Kirkeby, S., Aasted, B., Dahl, K., Hansen, A. K., Dieperink, H., … D’Apice, A. J. F. (2003). The resistance of delayed xenograft rejection to α(1,3)- galactosyltransferase gene inactivation and CD4 depletion in a mouse-to-at model. APMIS, 111(11), 1019–1026. https://doi.org/10.1111/j.1600-0463.2003.apm1111104.x

Readers' Seniority

Tooltip

Researcher 4

67%

Professor / Associate Prof. 1

17%

PhD / Post grad / Masters / Doc 1

17%

Readers' Discipline

Tooltip

Agricultural and Biological Sciences 2

40%

Nursing and Health Professions 1

20%

Veterinary Science and Veterinary Medic... 1

20%

Arts and Humanities 1

20%

Save time finding and organizing research with Mendeley

Sign up for free