Fabrication of Gentamicin Sulfate-Loaded 3D-Printed Polyvinyl Alcohol/Sodium Alginate/Gelatin-Methacryloyl Hybrid Scaffolds for Skin Tissue Replacement

9Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

3D-printed scaffolds can better mimic the function of human skin, both biologically and mechanically. Within the scope of this study, the effect of the addition of different amounts (10, 15, 20 mg) of gentamicin sulfate (GS) to a 10 mL solution of natural and synthetic polymers is investigated. Sodium alginate (SA), gelatin-methacryloyl (GelMA), and polyvinyl alcohol (PVA) are chosen as bioactive materials. The surface morphology and pore structures are visualized by scanning electron microscopy (SEM). According to the results, it is observed that the pore sizes of all scaffolds are smaller than 270 µm, the lowest value (130 µm) is obtained in the scaffold loaded with 15 mg GS, and it also has the highest tensile strength value (12.5 ± 7.6 MPa). Similarly, it is observed that the tensile strength (9.7 ± 4.5 MPa) is high in scaffold loaded with 20 mg GS. The biocompatibility test is performed with fibroblast cells, and the results show that the scaffolds are biocompatible with cells. The antibacterial test is carried out against the S.aureous and E. coli and the results indicate that all GS-loaded scaffolds demonstrate antibacterial activity.

Cite

CITATION STYLE

APA

Izgordu, M. S., Ayran, M., Ulag, S., Yildirim, R., Bulut, B., Sahin, A., … Gunduz, O. (2023). Fabrication of Gentamicin Sulfate-Loaded 3D-Printed Polyvinyl Alcohol/Sodium Alginate/Gelatin-Methacryloyl Hybrid Scaffolds for Skin Tissue Replacement. Macromolecular Materials and Engineering, 308(12). https://doi.org/10.1002/mame.202300151

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free