Ambient weathering of magnesium oxide for CO2 removal from air

94Citations
Citations of this article
285Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

To avoid dangerous climate change, new technologies must remove billions of tonnes of CO2 from the atmosphere every year by mid-century. Here we detail a land-based enhanced weathering cycle utilizing magnesite (MgCO3) feedstock to repeatedly capture CO2 from the atmosphere. In this process, MgCO3 is calcined, producing caustic magnesia (MgO) and high-purity CO2. This MgO is spread over land to carbonate for a year by reacting with atmospheric CO2. The carbonate minerals are then recollected and re-calcined. The reproduced MgO is spread over land to carbonate again. We show this process could cost approximately $46–159 tCO2−1 net removed from the atmosphere, considering grid and solar electricity without post-processing costs. This technology may achieve lower costs than projections for more extensively engineered Direct Air Capture methods. It has the scalable potential to remove at least 2–3 GtCO2 year−1, and may make a meaningful contribution to mitigating climate change.

Cite

CITATION STYLE

APA

McQueen, N., Kelemen, P., Dipple, G., Renforth, P., & Wilcox, J. (2020). Ambient weathering of magnesium oxide for CO2 removal from air. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-16510-3

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free